
FLASK-SOCKET.IO
Web Sockets Made Simple

WEB SOCKETS!

OK.
BUT,

WHY?

FIRST THERE WAS THE
INTERNET

AND THEN THERE WAS
TCP/IP

TCP/IP SOCKETS

import socket 
 
sock = socket.create_connection(('24.244.4.54', 80), timeout=30)  
try:  
 # Send the request 
 sock.sendall("Really important stuff")  
 
 # Get the response 
 response = sock.recv(1024) # Bytes 
finally:  
 sock.close()

TCP/IP SOCKETS

➤ Real time
➤ Reliable delivery
➤ No standards for delivery

➤ … just bits on the wire

➤ Requires persistent connection

BUT…

 I HAVE A 90 MHZ
PROCESSOR AND 16 MB
OF RAM

“From 1973 to 1974, Cerf's networking
research group at Stanford worked
out details of the idea, resulting in
the first TCP specification

➤ 4 74181 ALUs (~45 MHz)

➤ 128-512 KB of RAM

➤ 2.5 MB Single Platter
Storage Cartridge

HTTP

HTTP

➤ Request / Response

➤ Disconnect TCP socket after response

➤ Meta-data

➤ Information about the payload

➤ Date/time sent

➤ Caching

➤ etc…

➤ Lighter on server resources

➤ The Web!

HTTP Request

POST /example?key=value&something=other HTTP 1.1

Host: www.example.com

Accept: application/json, application/xml

Accept-Language: EN-US

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 4.0)

Connection: Keep-Alive

{ "Content": "Adding my content", "Other": [2, 4, 6, 8] }

http://www.example.com/example?key=value&something=other

HTTP (W/ REQUESTS)

import requests 
 
response = requests.get('http://www.google.ca')

UH,
SO…

SECURITY?

WHAT

ABOUT

IP

ADDRESSES?

BRAVE NEW WORLD (OF NETWORKS)

➤ Network Address Translation (NAT)

➤ Closed ports (pretty much web only)

➤ Security first

➤ ….

HTTP 1.1

WEB SOCKETS!

WEB SOCKETS

➤ Upgrade from a standard HTTP request

➤ Can navigate the modern NAT

➤ Can be authenticated

➤ More secure

GET /chat HTTP/1.1

Host: server.example.com

Upgrade: websocket

Connection: Upgrade

Sec-WebSocket-Key: x3JJHMbDL1EzLkh9GBhXDw==

Sec-WebSocket-Protocol: chat, superchat

Sec-WebSocket-Version: 13

Origin: http://example.com

HTTP/1.1 101 Switching Protocols

Upgrade: websocket

Connection: Upgrade

Sec-WebSocket-Accept: HSmrc0sMlYUkAGmm5OPpG2HaGWk=

Sec-WebSocket-Protocol: chat

FLASK-SOCKET.IO
Web Sockets Made Simple

OH, BUT
FIRST LETS
CHECK OUT

FLASK

FLASK

from flask import Flask 
app = Flask(__name__) 
 
@app.route("/")  
def hello(): 
 return "Hello World!" 
 
if __name__ == "__main__":  
 app.run()

AND

SOCKET.IO

TOO

SOCKET.IO CLIENT

<script src="/socket.io/socket.io.js"></script>  
<script>  
 var socket = io('http://localhost'); 
 socket.on('news', function (data) { 
 console.log(data); 
 socket.emit('my other event', { my: 'data' }); 
 }); 
</script>

SOCKET.IO

➤ Channels

➤ Namespaces

➤ Rooms (server-side)

FLASK-SOCKET.IO
Web Sockets Made Simple

FLASK-SOCKET.IO

from flask import Flask 
from flask_socketio import SocketIO 
 
app = Flask(__name__) 
app.config['SECRET_KEY'] = 'secret!' 
socketio = SocketIO(app) 
 
@socketio.on('channel')  
def handle_message(message): 
 print('received message: ' + message) 
 
if __name__ == '__main__':  
 socketio.run(app)

DEMO

